- 积分
- 2857
- 在线时间
- 1596 小时
- 最后登录
- 2009-4-9
- 阅读权限
- 100
- 精华
- 6
  
- UID
- 29222
- 帖子
- 2737
- 精华
- 6
- 经验
- 2857 点
- 金钱
- 2785 ¥
- 注册时间
- 2007-10-21
|
本帖最后由 红山老猫 于 2011-8-9 12:10 编辑
大家好,
Millwood兄的这篇高输出功率的1969M, 实在是一篇, 很精彩的文章。 请饶恕我未曾得到 Millwood兄的允许前, 擅自给他翻译, 但, 为了让更多坛友能分享这篇精彩的DIY文章, 我给他做了翻译, 我小心的将文里的精义做翻译, 任何不恰当的处理, 请 Millwood兄原谅。。。。红山老猫敬启
JLH1969(场管版本或晶体版本)公认被评断输出功率偏低, 原版的JLH1969有10W的输出能力,而在较高电供动作的JLH1969M则有输出20至25W到8欧姆阻抗的能力, 在大部分的情况下, 这是充足的。然而当您希望求取更大的输出功率,本篇这就是我与大家讨论更大输出功率的 JLH1969.
高功率输出的甲类动作扩音机, 可行性是较不实际的。所以我们在此讨论能在甲类或乙类状况下工作的1969M。
为了让1969M输出更多的功率, 有两件重要的事要解决。
1. 增阻电路 (the bootstrap network) : 原版的增阻电路无法提供足够的摆幅及在高输出状况下,驱动输出级需索的电流量, 改用恒流源电路取代增阻电路,是合理的安排。然而,这会产生两个新的问题 a):稳定性 - 原版线路利用增阻电路,大于100Khz的自然衰减特性 ,求得更佳的稳定性。使用恒流电路就必须使用米勒电容令机器的高频段稳定。这会影响了机器的上升速率 b):输出摆幅,原本的增阻电路有输出大于电供电压10V的摆动能力, 这对场管版本是非常有利的。使用恒流源电路会牺牲掉这个特性。解决办法是采用更高的电供电压。
2. 场管的跨导特性: 场管在高输出时, 也许提供更多的电流输出, 我们必须在场管的闸极施加更大的电压输入摆幅, 然而,有时这还是不足够的, 我们必须 a): 使用纵向场管 (又称竖直结构场管)以求去更高的跨导特性, 或 b): 并联更多的输出场管
目的就是求取超强输出能力 (SHO)的1969M在8欧姆负荷输出100W功率, 在4欧姆的状况下倍增
以下就是 SHO1969M的电路
以上蓝色字体是我做的翻译
one valid critism of JLH1969 (BJT or MOSFET) is that it has limited power output. The original JLH1969 is good for 10w rms, and the JLH1969M, working at higher voltage, can deliver 20 - 25w rms into an 8ohm load. while that's mostly adequate, there are cases where you would want more. that's why I started this thread, to discuss higher output versions of the JLH1969.
Given that Class A operation is unrealistic at high output power, we will instead focus on JLH1969M that works in both Class A or Class B.
two issues need to be resolved for the JLH1969M to deliver more power:
1) the bootstrap network: the original bootstrap network wouldn't be able to deliver the needed voltage swing, nor current capabilities, required by the output stage for high power output. an obvious solution is to use a true constant current source. This, however, create two problems: a) stability - the original designs rely on the roll-off of gains from the bootstrap network at > 100khz for better stability. With a true CCS, you will have to use miller cap to ensure stability at high frequencies. This may have slew rate implications. b) voltage swing: the original bootstrap network can swing above the supply rail for as much as 10v, and that's very helpful for the mosfet version. with a true CCS, you can swing at most to 1 - 2v to the rail voltage. the way to solve that is to use a higher supply rail.
2) the transconductance of MOSFETs: to deliver higher output power, we have to deliver higher output current. that requires more voltage swing on the gates of the mosfet. Sometimes, even that is not sufficient so we have to a) use vertical mosfets for their considreably higher transconductance, or b) parallel more mosfets to enhance the gain.
the design goal is to produce a SUPER HIGH OUTPUT ("SHO") version of the 1969M that is capable of more than 100w rms into a 8ohm load and double that into a 4 ohm load.
here is the schematic for the JLH1969M SHO. |
-
|